## Exploring Faithful Rationale for Multi-hop Fact Verification via Salience-Aware Graph Learning

Jiasheng Si, Yingjie Zhu, Deyu Zhou\*

School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, China {jasenchn, yj\_zhu, d.zhou}@seu.edu.cn

**AAAI2023** 

code: none

Claim: Olympic athlete May Wafic Sardouk represented Lebanon at the 1988 Summer Olympics in Seoul, Korea, landing in the 6th position in the Heat 4 event.

#### **Evidence:**

S<sub>1</sub>(wiki/May Sardouk): May Wafic Sardouk (Arabic: وفيق مي born June 4, 1963) is a Lebanese Olympic athlete.

S<sub>2</sub>(wiki/May Sardouk): She represented Lebanon in 1988 Summer Olympics in Seoul.

S<sub>3</sub>(wiki/May Sardouk): Sardouk and Nancy Khalaf were the only female participants for Lebanon in that tournament among a total of 21 participant for Lebanon.

**S**<sub>4</sub>(wiki/Seoul): Seoul, officially the Seoul Special City, is the capital and largest metropolis of South Korea.

S<sub>5</sub>(wiki/1988 Summer Olympics): The 1988 Summer Olympics, ..., was an international multi-sport event held from 17 September to 2 October 1988 in Seoul, South Korea.

### T<sub>6</sub>(wiki/May Sardouk):

| Heat 4 |                   |         |  |  |  |  |
|--------|-------------------|---------|--|--|--|--|
| Rank   | Athlete           | Time    |  |  |  |  |
| 1      | Diane Dixon (USA) | 52.45   |  |  |  |  |
| 2      | Ute Thimm (FRG)   | 52.79   |  |  |  |  |
|        |                   |         |  |  |  |  |
| 6      | May Sardouk (LIB) | 1:00.01 |  |  |  |  |

Label: SUPPORTS

Figure 1: An example from FEVEROUS dataset, where *S1*, *S2*, *S4* and two table cells in *T6* are considered as rationales.

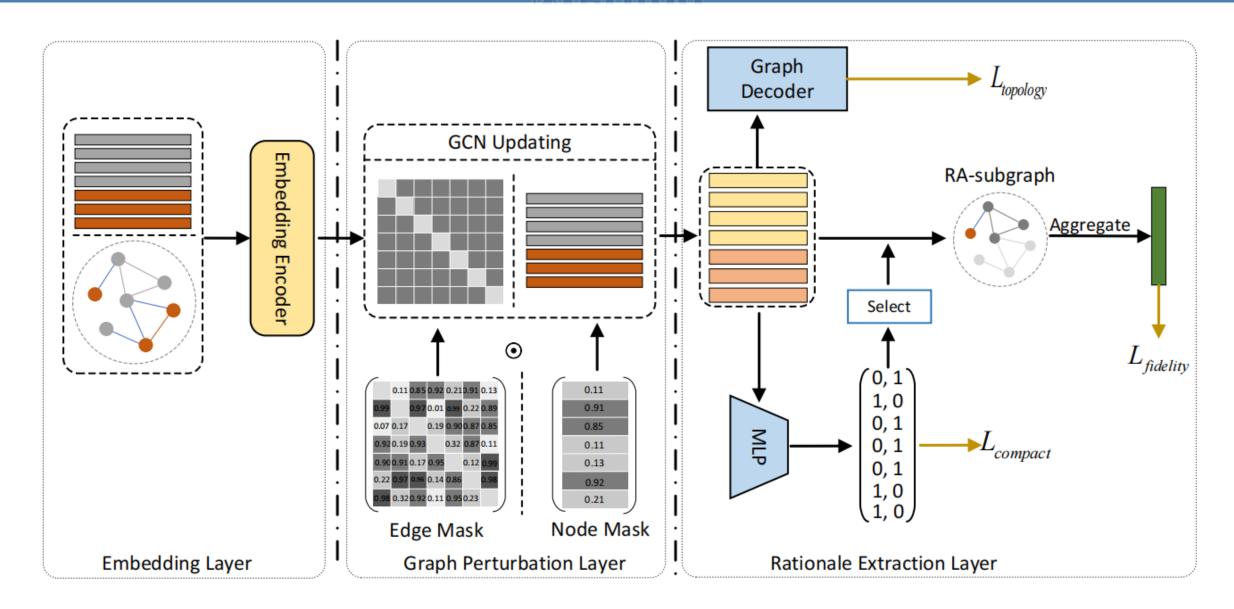
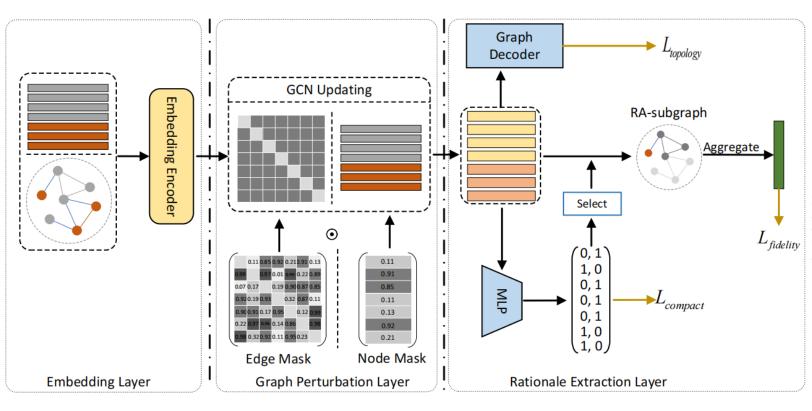



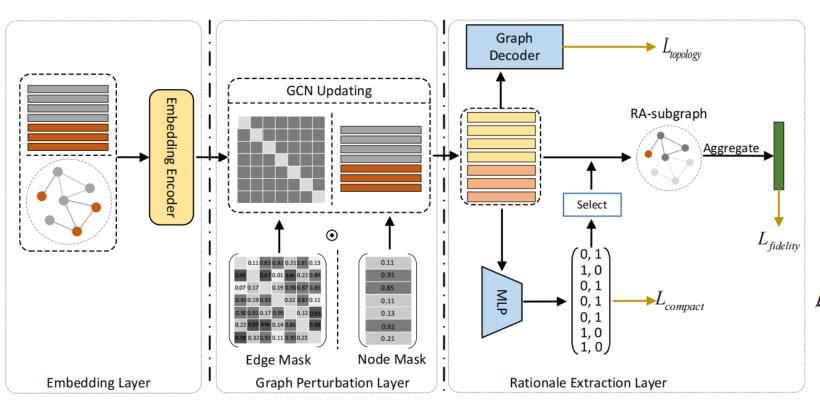

Figure 2: The overall framework of the proposed SaGP.



mating 1: (I) the sum regulation  $\mathcal{L}_{sum}$  of all entries in the perturbation matrix to constrain the size of the perturbation; (II) the information entropy regulation  $\mathcal{L}_{entropy}$  to reduce the uncertainty of the perturbation matrix.

Figure 2: The overall framework of the proposed SaGP.

Let f be a trained GCN layer for node representation learning,


$$f(A, H; W) = relu(\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}HW), \tag{1}$$

where  $\widetilde{A}=A+I, I$  is the identity matrix,  $\widetilde{D}$  is the degree matrix, H denotes the evidence embeddings and W denotes the parameters of GCN.

$$\widetilde{f}(A, H; W) = relu(((\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}) \odot \sigma(P))HW), \quad (2)$$

where  $\odot$  denotes the element product.

$$\widetilde{f}(A,H;W) = relu(\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}(H\odot\sigma(M))W) \qquad (3)$$



$$L_{compact} = \|norm(S^T A S) - I_2\|_F, \tag{6}$$

$$L_{topology} = CrossEntropy(\hat{A}, A),$$
$$\hat{A} = \sigma(\widetilde{U}\widetilde{U}^{T})$$
(7)

$$\mathcal{L} = \lambda_1 \mathcal{L}_{fidelity} + \lambda_2 \mathcal{L}_{compact} + \lambda_3 \mathcal{L}_{topology} + \lambda_4 \mathcal{L}_{sum} + \lambda_5 \mathcal{L}_{entropy},$$
(8)

$$S = softmax(MLP(\widetilde{U}; W_{sub})), \tag{4}$$

$$L_{fidelity} = CrossEntropy(\hat{y}_{sub}^{c}(\widetilde{U}), \hat{y}_{full}^{c}(U)), \quad (5)$$

| <b>FEVEROUS</b> | Num.Sup | Num.Ref | Avg.Ra | Avg.S | Avg.C |
|-----------------|---------|---------|--------|-------|-------|
| Train           | 41,835  | 27,215  | 4.85   | 1.43  | 3.42  |
| Test            | 3,908   | 3,481   | 4.26   | 1.43  | 2.83  |

Table 1: Statistics of the FEVEROUS dataset. *Num.Sup* and *Num.Ref* are the number of claims with *SUPPORT* label and *REFUTE* label. *Avg.Ra*, *Avg.S*, and *Avg.C* denote the average number of *rationales*, *sentence rationales*, *table cell rationales* per claim, respectively.

### Experiments

| Model |              | Claim              |                            | Rationale            |                            |                      | Claim & Rationale             |                    |                    |
|-------|--------------|--------------------|----------------------------|----------------------|----------------------------|----------------------|-------------------------------|--------------------|--------------------|
|       |              | F1.c               | Acc.c                      | F1.r                 | Ext.acc.r                  | P.r                  | R.r                           | Acc.Part           | Acc.Full           |
|       | Unsupervised |                    |                            |                      |                            |                      |                               |                    |                    |
| 7     | ΓSS-U        | 34.61              | 52.93                      | 18.75                | 16.83                      | 36.57                | 14.59                         | 23.77              | 1.13               |
| D     | eClarE       | 68.23              | 69.18                      | 27.59                | 13.63                      | 31.46                | 31.71                         | 43.85              | 9.81               |
|       | IB-U         | 77.30              | 77.30                      | 65.28                | 20.08                      | 78.01                | 67.30                         | 75.36              | 15.76              |
|       | SaGP         | <b>85.05</b> ±0.02 | <b>85.15</b> ±0.02         | $80.08 \pm 0.01$     | $45.33 \pm 0.05$           | $79.15 \pm 0.03$     | $88.30 \pm 0.01$              | <b>82.92</b> ±0.03 | <b>41.17</b> ±0.05 |
| Edge  | -T.          | $85.04 \pm 0.02$   | $\pmb{85.15} \!\pm\! 0.02$ | $80.01\!\pm\!0.01$   | $45.30\!\pm\!0.06$         | $79.14 \!\pm\! 0.01$ | $88.30 \!\pm\! 0.01$          | $82.82 \pm 0.03$   | $40.11 \pm 0.05$   |
| Mask  | -C.          | $85.04 \pm 0.05$   | $85.15\!\pm\!0.07$         | $80.25 \!\pm\! 0.16$ | $\pmb{46.22} \!\pm\! 1.41$ | $79.80 \pm 0.97$     | $87.68 \pm 1.09$              | $82.85 \pm 0.06$   | $41.14 \pm 1.57$   |
|       | -T.&C.       | $85.01\!\pm\!0.04$ | $85.11 \!\pm\! 0.04$       | $80.15\!\pm\!0.01$   | $45.23\!\pm\!0.03$         | $79.14 \!\pm\! 0.01$ | $88.46 \pm 0.01$              | $82.92 \pm 0.05$   | $40.01 \pm 0.01$   |
|       | SaGP         | 82.24±0.13         | <b>82.26</b> ±0.13         | $70.47 \pm 0.08$     | $38.56 \pm 0.13$           | <b>75.19</b> ±0.12   | $76.40 \pm 0.05$              | $75.03 \pm 0.08$   | 33.61±0.01         |
| Node  | -T.          | $82.25 \pm 0.12$   | $82.25\!\pm\!0.12$         | $70.50 \pm 0.09$     | $38.60 \pm 0.10$           | $75.19 \pm 0.12$     | $76.37 \pm 0.07$              | $75.04 \pm 0.06$   | $33.65 \pm 0.04$   |
| Mask  | -C.          | $81.80 \pm 0.19$   | $81.81\!\pm\!0.19$         | $70.34\!\pm\!0.26$   | $36.97\!\pm\!0.55$         | $73.60\!\pm\!1.05$   | $\textbf{78.28} \!\pm\! 1.72$ | $75.36 \pm 0.54$   | $32.18 \pm 0.56$   |
|       | -T.&C.       | $81.85\!\pm\!0.15$ | $81.85\!\pm\!0.16$         | $70.17 \pm 0.12$     | $37.50 \pm 0.18$           | $74.27\!\pm\!0.05$   | $77.01\!\pm\!0.18$            | $74.78 \pm 0.22$   | $32.64 \pm 0.04$   |
|       | SaGP         | <b>82.06</b> ±0.12 | <b>82.08</b> ±0.12         | 70.40±0.21           | 38.66±0.27                 | $74.99 \pm 0.27$     | $76.27 \pm 0.14$              | 75.27±0.81         | 33.90±0.25         |
| All   | -T.          | $81.77 \pm 0.11$   | $81.78 \pm 0.11$           | $70.14\!\pm\!0.20$   | $37.40 \pm 0.36$           | $74.23\!\pm\!0.21$   | $76.95 \pm 0.16$              | $74.67 \pm 0.15$   | $32.66 \pm 0.33$   |
| All   | -C.          | $81.89 \pm 0.09$   | $81.90 \pm 0.09$           | $73.64 \pm 4.80$     | $40.17 \pm 3.60$           | $75.81 \pm 2.09$     | $81.11 \pm 5.70$              | $76.59 \pm 2.54$   | <b>34.99</b> ±3.03 |
|       | -T.&C.       | $82.03 \pm 0.11$   | $82.05\!\pm\!0.11$         | $70.38 \pm 0.23$     | $38.60 \pm 0.26$           | $74.93\!\pm\!0.28$   | $76.30 \pm 0.15$              | $74.64 \pm 0.05$   | $33.84 \pm 0.24$   |
|       |              |                    |                            | Su                   | pervised                   |                      |                               |                    |                    |
| BERT  | Γ Blackbox   | 64.72              | 65.20                      | -                    | -                          | -                    | -                             | -                  | -                  |
| P     | ipeline      | 69.76              | 69.80                      | 77.56                | 44.83                      | 76.87                | 86.75                         | 62.77              | 31.23              |
| 7     | TSS-S        | 72.99              | 74.36                      | 44.15                | 19.42                      | 85.67                | 34.12                         | 67.75              | 11.76              |
|       | IB-S         | 79.14              | 79.17                      | 65.68                | 20.08                      | 78.91                | 67.31                         | 76.70              | 16.37              |
| Trans | former-XH    | 74.05              | 74.33                      | 76.70                | 49.10                      | 79.43                | 80.47                         | 69.17              | 40.22              |
|       | Edge Mask    | <b>85.12</b> ±0.01 | $85.25 \pm 0.01$           | $80.49\pm0.02$       | 48.22±0.01                 | $81.18 \pm 0.02$     | $86.14 \pm 0.02$              | <b>82.77</b> ±0.01 | $43.36\pm0.01$     |
| SaGP  | Node Mask    | $81.53\!\pm\!0.06$ | $81.54 \!\pm\! 0.06$       | $84.50 \pm 0.66$     | $56.23 \pm 0.23$           | $85.51 \!\pm\! 0.06$ | $86.48 \pm 0.02$              | $78.10 \pm 0.11$   | $47.67 \pm 0.29$   |
|       | All          | $82.10\pm0.04$     | $82.15 \pm 0.03$           | <b>85.80</b> ±0.07   | <b>61.94</b> ±0.26         | <b>87.89</b> ±0.07   | <b>87.05</b> ±0.06            | $78.76 \pm 0.11$   | <b>53.19</b> ±0.30 |

| Model |           | FEVEROUS                |                   |                         |  |  |
|-------|-----------|-------------------------|-------------------|-------------------------|--|--|
|       |           | Fidelity $(\downarrow)$ | Size (↑)          | Sparsity $(\downarrow)$ |  |  |
| SaGP  | Edge Mask | $1.95 \pm 0.59$         | $367.40\pm0.89$   | $3.31\pm0.23$           |  |  |
|       | -C.       | $1.53 \pm 0.02$         | $361.12 \pm 0.01$ | $4.81 \pm 0.22$         |  |  |
|       | -T.       | $1.42 \pm 0.01$         | $361.44 \pm 1.24$ | $4.88 \pm 0.05$         |  |  |
|       | -C. & T.  | $1.42 \pm 0.00$         | $361.45{\pm}1.21$ | $4.80 \pm 0.05$         |  |  |

Table 3: Evaluation of the edge mask matrix. ↓ denotes the lower is better.

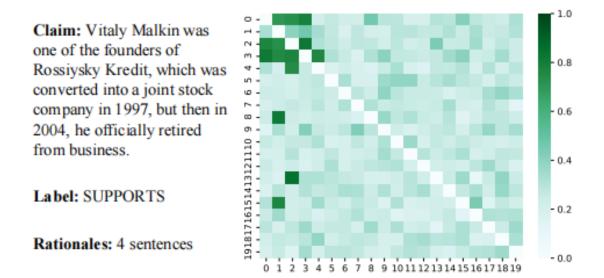



Figure 3: An example with visualization of the edge mask.

Claim: The Victoria Falls are a flat plateau extending hundreds of kilometres, formed as the full width of the Zambezi River plummets in a single vertical drop, with the river's course dotted with islands as the river approaches the falls.

### **Rationales:**

**S**<sub>1</sub>(wiki/Victoria Falls): There are no mountains, escarpments, or deep valleys; only a flat plateau extending hundreds of kilometres in all directions. (score: 0.9333)

**S<sub>2</sub>(wiki/Victoria Falls)**: The falls are formed as the full width of the river plummets in a single vertical drop into a transverse chasm 1,708 metres (5,604 ft) wide, carved by its waters along a fracture zone in the basalt plateau. (score: 0.8963)

S<sub>3</sub>(wiki/Victoria Falls): The river's course is dotted with numerous tree-covered islands, which increase in number as the river approaches the falls. (score: 0.9382)

 $T_4$ (wiki/Victoria Falls):

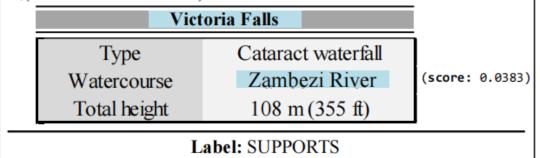



Figure 4: A case with failing to identify rationales within T4.

# Thanks